
Ecosystem
• HTTPS for all sites, unencrypted HTTP deprecated
o Alternatively: Anyone who wants a cert should be able to get a

cert when they want a cert
• .onion and DV?
• HTTPS being the default mode of browsers; HTTP connections

specifically marked as untrusted
• Full logging to Certificate Transparency of all issued certificates
o Alternatively: Some other mechanism, related or unrelated to CT

• Automatic, public handling of CA misissuance (ala Safebrowsing)
• Automatic issuance of certificates using standard APIs (like ACME)
• Automatic, fully functioning support for OCSP stapling in servers
• Removal of support for Extended Validation Certificates (UI)
• Root Store auto-update across clients

• Require OCSP-Staple or short lived certs
• On the client side, solve the clock problem. Roughtime?
• Increase usage of name constraints, so that fewer CAs are

authorized for the whole web

Policy
• Browser approval required for every cross-sign or root transfer
• No “withdrawing” a root from inclusion, only key destruction
• Mad-lib style normalized form of audit reports (for machine reading)
• Mad-lib style normalized form of CP/CPS (for machine reading)
• Browser dictated trusted auditors?
• Separate compliance reporting and security reporting for CAs, both

public

CA Auditing
• 100% auditing of certificates for technical compliance with relevant

standards
• Automated and ongoing checking of CA CRL/OCSP/ACME/test

sites for compliance
• Every party responsible for domain validation is identified and

audited
• Every creation of a sub-CA key requiring an audited ceremony
• Key destruction ceremony auditing
• Key transfer reporting requirements

o Transfer of key alone
o Acquisition of CA business

CA/Browser Forum Documents
• Elimination of the Network Security requirements (outdated, not

best practice, counterproductive in some cases, like requiring AV)
• Standards related to S/MIME certificates
• Adopt Code of Conduct

Standards
• CAA fully deployed and implemented
• * CAA options for indicating methods of validation that can be used

(e.g. WHOIS information versus Domain Authorization Document)
• Support for EdDSA (Curve25519, maybe Curve448)
o Prehash variants?

• Support for post-SHA-2 hash function
• Multiple hash functions widely supported
• Post-quantum?
• CA Involvement and Implementation of further Standards work
• Faster turnaround time for adding new PKI features (key types,

extensions, etc.) to the CA ecosystem
• No more parameterized algorithms.
o Ed25519 = good

o ECDSA & RSA-PKCS1 = bad
o RSA-PSS = don’t even go there.
o One key type => one set of parameters => one OID.
o If we need, e.g., a SHA-3 Ed25519, define Ed25519v2 =

EdDSA(curve25519, SHA-3-512) or whatever.

CA Restrictions/Limitations
• Profile of CRL (must include reason codes, must use

issuerDistributionPoints, must not use extensions)
• Profile of OCSP (must not use nonce, must not use extensions)
• CAA required, deployed, and enforced
• Certificate lifetimes reduced to 13 months within 3 years, and 3-6

months in 5 years
• Certificate lifetimes converging on 90 days
• Reuse of cached information limited by the method used to obtain

it
o Ex: File based auth limited to 5/15 min. Legal document based

limited to N months.
• All CAs support CT information delivered in OCSP responses

(perhaps via profile of standard API?)

• Limit the binding of one key to one name (e.g. rekey = new cert &
new name, no sharing keys among CA certs)

• Every ‘online’ subCA being constrained with pathLen:0 and limited
to issue certificates for a single purpose

• No unnecessary bloat in certificates (LogoType, User Notice/CPS
text)

• No hydra-headed multi-path certificates - better guidance for the
signing and issuance of intermediates and cross-signs, one cert for
each unique key+name tuple, etc

• Restrictions / prohibitions on revocation (objective = key
compromise only, not subjective like content
filtering/censoring/malware)

• Name-matching must be byte-for-byte identical, no
canonicalization needed

